Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Heliyon ; 10(7): e28560, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590890

RESUMO

Single Sign-On (SSO) methods are the primary solution to authenticate users across multiple web systems. These mechanisms streamline the authentication procedure by avoiding duplicate developments of authentication modules for each application. Besides, these mechanisms also provide convenience to the end-user by keeping the user authenticated when switching between different contexts. To ensure this cross-application authentication, SSO relies on an Identity Provider (IdP), which is commonly set up and managed by each institution that needs to enforce SSO internally. However, the solution is not so straightforward when several institutions need to cooperate in a unique ecosystem. This could be tackled by centralizing the authentication mechanisms in one of the involved entities, a solution raising responsibilities that may be difficult for peers to accept. Moreover, this solution is not appropriate for dynamic groups, where peers may join or leave frequently. In this paper, we propose an architecture that uses a trusted third-party service to authenticate multiple entities, ensuring the isolation of the user's attributes between this service and the institutional SSO systems. This architecture was validated in the EHDEN Portal, which includes web tools and services of this European health project, to establish a Federated Authentication schema.

2.
An Pediatr (Engl Ed) ; 100(3): 195-201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461129

RESUMO

This article examines the use of artificial intelligence (AI) in the field of paediatric care within the framework of the 7P medicine model (Predictive, Preventive, Personalized, Precise, Participatory, Peripheral and Polyprofessional). It highlights various applications of AI in the diagnosis, treatment and management of paediatric diseases as well as the role of AI in prevention and in the efficient management of health care resources and the resulting impact on the sustainability of public health systems. Successful cases of the application of AI in the paediatric care setting are presented, placing emphasis on the need to move towards a 7P health care model. Artificial intelligence is revolutionizing society at large and has a great potential for significantly improving paediatric care.


Assuntos
Inteligência Artificial , Humanos , Criança
3.
J Cheminform ; 16(1): 27, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449058

RESUMO

For understanding a chemical compound's mechanism of action and its side effects, as well as for drug discovery, it is crucial to predict its possible protein targets. This study examines 15 developed target-centric models (TCM) employing different molecular descriptions and machine learning algorithms. They were contrasted with 17 third-party models implemented as web tools (WTCM). In both sets of models, consensus strategies were implemented as potential improvement over individual predictions. The findings indicate that TCM reach f1-score values greater than 0.8. Comparing both approaches, the best TCM achieves values of 0.75, 0.61, 0.25 and 0.38 for true positive/negative rates (TPR, TNR) and false negative/positive rates (FNR, FPR); outperforming the best WTCM. Moreover, the consensus strategy proves to have the most relevant results in the top 20 % of target profiles. TCM consensus reach TPR and FNR values of 0.98 and 0; while on WTCM reach values of 0.75 and 0.24. The implemented computational tool with the TCM and their consensus strategy at: https://bioquimio.udla.edu.ec/tidentification01/ . Scientific Contribution: We compare and discuss the performances of 17 public compound-target interaction prediction models and 15 new constructions. We also explore a compound-target interaction prioritization strategy using a consensus approach, and we analyzed the challenging involved in interactions modeling.

4.
Stud Health Technol Inform ; 294: 585-586, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612156

RESUMO

Many clinical studies are greatly dependent on an efficient identification of relevant datasets. This selection can be performed in existing health data catalogues, by searching for available metadata. The search process can be optimised through questioning-answering interfaces, to help researchers explore the available data present. However, when searching the distinct catalogues the lack of metadata harmonisation imposes a few bottlenecks. This paper presents a methodology to allow semantic search over several biomedical database catalogues, by extracting the information using a shared domain knowledge. The resulting pipeline allows the converted data to be published as FAIR endpoints, and it provides an end-user interface that accepts natural language questions.


Assuntos
Metadados , Semântica , Bases de Dados Factuais , Idioma , Processamento de Linguagem Natural
5.
Comput Struct Biotechnol J ; 19: 4538-4558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471498

RESUMO

Drug discovery aims at finding new compounds with specific chemical properties for the treatment of diseases. In the last years, the approach used in this search presents an important component in computer science with the skyrocketing of machine learning techniques due to its democratization. With the objectives set by the Precision Medicine initiative and the new challenges generated, it is necessary to establish robust, standard and reproducible computational methodologies to achieve the objectives set. Currently, predictive models based on Machine Learning have gained great importance in the step prior to preclinical studies. This stage manages to drastically reduce costs and research times in the discovery of new drugs. This review article focuses on how these new methodologies are being used in recent years of research. Analyzing the state of the art in this field will give us an idea of where cheminformatics will be developed in the short term, the limitations it presents and the positive results it has achieved. This review will focus mainly on the methods used to model the molecular data, as well as the biological problems addressed and the Machine Learning algorithms used for drug discovery in recent years.

6.
PeerJ Comput Sci ; 7: e584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322589

RESUMO

In recent years, machine learning (ML) researchers have changed their focus towards biological problems that are difficult to analyse with standard approaches. Large initiatives such as The Cancer Genome Atlas (TCGA) have allowed the use of omic data for the training of these algorithms. In order to study the state of the art, this review is provided to cover the main works that have used ML with TCGA data. Firstly, the principal discoveries made by the TCGA consortium are presented. Once these bases have been established, we begin with the main objective of this study, the identification and discussion of those works that have used the TCGA data for the training of different ML approaches. After a review of more than 100 different papers, it has been possible to make a classification according to following three pillars: the type of tumour, the type of algorithm and the predicted biological problem. One of the conclusions drawn in this work shows a high density of studies based on two major algorithms: Random Forest and Support Vector Machines. We also observe the rise in the use of deep artificial neural networks. It is worth emphasizing, the increase of integrative models of multi-omic data analysis. The different biological conditions are a consequence of molecular homeostasis, driven by both protein coding regions, regulatory elements and the surrounding environment. It is notable that a large number of works make use of genetic expression data, which has been found to be the preferred method by researchers when training the different models. The biological problems addressed have been classified into five types: prognosis prediction, tumour subtypes, microsatellite instability (MSI), immunological aspects and certain pathways of interest. A clear trend was detected in the prediction of these conditions according to the type of tumour. That is the reason for which a greater number of works have focused on the BRCA cohort, while specific works for survival, for example, were centred on the GBM cohort, due to its large number of events. Throughout this review, it will be possible to go in depth into the works and the methodologies used to study TCGA cancer data. Finally, it is intended that this work will serve as a basis for future research in this field of study.

7.
Stud Health Technol Inform ; 281: 327-331, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042759

RESUMO

The process of refining the research question in a medical study depends greatly on the current background of the investigated subject. The information found in prior works can directly impact several stages of the study, namely the cohort definition stage. Besides previous published methods, researchers could also leverage on other materials, such as the output of cohort selection tools, to enrich and to accelerate their own work. However, this kind of information is not always captured by search engines. In this paper, we present a methodology, based on a combination of content-based retrieval and text annotation techniques, to identify relevant scientific publications related to a research question and to the selected data sources.


Assuntos
Armazenamento e Recuperação da Informação , Ferramenta de Busca , Estudos de Coortes
8.
JMIR Med Inform ; 9(2): e22976, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33629960

RESUMO

BACKGROUND: Currently, existing biomedical literature repositories do not commonly provide users with specific means to locate and remotely access biomedical databases. OBJECTIVE: To address this issue, we developed the Biomedical Database Inventory (BiDI), a repository linking to biomedical databases automatically extracted from the scientific literature. BiDI provides an index of data resources and a path to access them seamlessly. METHODS: We designed an ensemble of deep learning methods to extract database mentions. To train the system, we annotated a set of 1242 articles that included mentions of database publications. Such a data set was used along with transfer learning techniques to train an ensemble of deep learning natural language processing models targeted at database publication detection. RESULTS: The system obtained an F1 score of 0.929 on database detection, showing high precision and recall values. When applying this model to the PubMed and PubMed Central databases, we identified over 10,000 unique databases. The ensemble model also extracted the weblinks to the reported databases and discarded irrelevant links. For the extraction of weblinks, the model achieved a cross-validated F1 score of 0.908. We show two use cases: one related to "omics" and the other related to the COVID-19 pandemic. CONCLUSIONS: BiDI enables access to biomedical resources over the internet and facilitates data-driven research and other scientific initiatives. The repository is openly available online and will be regularly updated with an automatic text processing pipeline. The approach can be reused to create repositories of different types (ie, biomedical and others).

9.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266378

RESUMO

Osteosarcoma is the most common type of primary malignant bone tumor. Although nowadays 5-year survival rates can reach up to 60-70%, acute complications and late effects of osteosarcoma therapy are two of the limiting factors in treatments. We developed a multi-objective algorithm for the repurposing of new anti-osteosarcoma drugs, based on the modeling of molecules with described activity for HOS, MG63, SAOS2, and U2OS cell lines in the ChEMBL database. Several predictive models were obtained for each cell line and those with accuracy greater than 0.8 were integrated into a desirability function for the final multi-objective model. An exhaustive exploration of model combinations was carried out to obtain the best multi-objective model in virtual screening. For the top 1% of the screened list, the final model showed a BEDROC = 0.562, EF = 27.6, and AUC = 0.653. The repositioning was performed on 2218 molecules described in DrugBank. Within the top-ranked drugs, we found: temsirolimus, paclitaxel, sirolimus, everolimus, and cabazitaxel, which are antineoplastic drugs described in clinical trials for cancer in general. Interestingly, we found several broad-spectrum antibiotics and antiretroviral agents. This powerful model predicts several drugs that should be studied in depth to find new chemotherapy regimens and to propose new strategies for osteosarcoma treatment.

10.
ACS Omega ; 5(42): 27211-27220, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134682

RESUMO

Sarcomas are a group of malignant neoplasms of connective tissue with a different etiology than carcinomas. The efforts to discover new drugs with antisarcoma activity have generated large datasets of multiple preclinical assays with different experimental conditions. For instance, the ChEMBL database contains outcomes of 37,919 different antisarcoma assays with 34,955 different chemical compounds. Furthermore, the experimental conditions reported in this dataset include 157 types of biological activity parameters, 36 drug targets, 43 cell lines, and 17 assay organisms. Considering this information, we propose combining perturbation theory (PT) principles with machine learning (ML) to develop a PTML model to predict antisarcoma compounds. PTML models use one function of reference that measures the probability of a drug being active under certain conditions (protein, cell line, organism, etc.). In this paper, we used a linear discriminant analysis and neural network to train and compare PT and non-PT models. All the explored models have an accuracy of 89.19-95.25% for training and 89.22-95.46% in validation sets. PTML-based strategies have similar accuracy but generate simplest models. Therefore, they may become a versatile tool for predicting antisarcoma compounds.

11.
Int Immunopharmacol ; 89(Pt A): 107026, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33045560

RESUMO

Interleukin 17 (IL-17) is a proinflammatory cytokine that acts as an immune checkpoint for several autoimmune diseases. Therapeutic neutralizing antibodies that target this cytokine have demonstrated clinical efficacy in psoriasis. However, biologics have limitations such as their high cost and their lack of oral bioavailability. Thus, it is necessary to expand the therapeutic options for this IL-17A/IL-17RA pathway, applying novel drug discovery methods to find effective small molecules. In this work, we combined biophysical and cell-based assays with structure-based docking to find novel ligands that target this pathway. First, a virtual screening of our chemical library of 60000 compounds was used to identify 67 potential ligands of IL-17A and IL-17RA. We developed a biophysical label-free binding assay to determine interactions with the extracellular domain of IL-17RA. Two molecules (CBG040591 and CBG060392) with quinazolinone and pyrrolidinedione chemical scaffolds, respectively, were confirmed as ligands of IL-17RA with micromolar affinity. The anti-inflammatory activity of these ligands as cytokine-release inhibitors was evaluated in human keratinocytes. Both ligands inhibited the release of chemokines mediated by IL-17A, with an IC50 of 20.9 ± 12.6 µM and 23.6 ± 11.8 µM for CCL20 and an IC50 of 26.7 ± 13.1 µM and 45.3 ± 13.0 µM for CXCL8. Hence, they blocked IL-17A proinflammatory activity, which is consistent with the inhibition of the signalling of the IL-17A receptor by ligand CBG060392. Therefore, we identified two novel immunopharmacological ligands targeting the IL-17A/IL-17RA pathway with antiinflammatory efficacy that can be promising tools for a drug discovery program for psoriasis.


Assuntos
Anti-Inflamatórios/farmacologia , Descoberta de Drogas , Interleucina-17/antagonistas & inibidores , Queratinócitos/efeitos dos fármacos , Psoríase/tratamento farmacológico , Receptores de Interleucina-17/antagonistas & inibidores , Quimiocina CCL20/metabolismo , Células HaCaT , Humanos , Interleucina-17/metabolismo , Interleucina-8/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Ligantes , Psoríase/imunologia , Psoríase/metabolismo , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas , Fluxo de Trabalho
12.
BMC Mol Cell Biol ; 21(1): 52, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640984

RESUMO

BACKGROUND: The main challenge in cancer research is the identification of different omic variables that present a prognostic value and personalised diagnosis for each tumour. The fact that the diagnosis is personalised opens the doors to the design and discovery of new specific treatments for each patient. In this context, this work offers new ways to reuse existing databases and work to create added value in research. Three published signatures with significante prognostic value in Colon Adenocarcinoma (COAD) were indentified. These signatures were combined in a new meta-signature and validated with main Machine Learning (ML) and conventional statistical techniques. In addition, a drug repurposing experiment was carried out through Molecular Docking (MD) methodology in order to identify new potential treatments in COAD. RESULTS: The prognostic potential of the signature was validated by means of ML algorithms and differential gene expression analysis. The results obtained supported the possibility that this meta-signature could harbor genes of interest for the prognosis and treatment of COAD. We studied drug repurposing following a molecular docking (MD) analysis, where the different protein data bank (PDB) structures of the genes of the meta-signature (in total 155) were confronted with 81 anti-cancer drugs approved by the FDA. We observed four interactions of interest: GLTP - Nilotinib, PTPRN - Venetoclax, VEGFA - Venetoclax and FABP6 - Abemaciclib. The FABP6 gene and its role within different metabolic pathways were studied in tumour and normal tissue and we observed the capability of the FABP6 gene to be a therapeutic target. Our in silico results showed a significant specificity of the union of the protein products of the FABP6 gene as well as the known action of Abemaciclib as an inhibitor of the CDK4/6 protein and therefore, of the cell cycle. CONCLUSIONS: The results of our ML and differential expression experiments have first shown the FABP6 gene as a possible new cancer biomarker due to its specificity in colonic tumour tissue and no expression in healthy adjacent tissue. Next, the MD analysis showed that the drug Abemaciclib characteristic affinity for the different protein structures of the FABP6 gene. Therefore, in silico experiments have shown a new opportunity that should be validated experimentally, thus helping to reduce the cost and speed of drug screening. For these reasons, we propose the validation of the drug Abemaciclib for the treatment of colon cancer.


Assuntos
Aminopiridinas/química , Aminopiridinas/uso terapêutico , Benzimidazóis/química , Benzimidazóis/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Algoritmos , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Bases de Dados de Proteínas , Reposicionamento de Medicamentos , Epistasia Genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Hormônios Gastrointestinais/genética , Hormônios Gastrointestinais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida
13.
Stud Health Technol Inform ; 270: 1183-1184, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570570

RESUMO

Aiming to better understand the genetic and environmental associations of Alzheimer's disease, many clinical trials and scientific studies have been conducted. However, these studies are often based on a small number of participants. To address this limitation, there is an increasing demand of multi-cohorts studies, which can provide higher statistical power and clinical evidence. However, this data integration implies dealing with the diversity of cohorts structures and the wide variability of concepts. Moreover, discovering similar cohorts to extend a running study is typically a demanding task. In this paper, we present a recommendation system to allow finding similar cohorts based on profile interests. The method uses collaborative filtering mixed with context-based retrieval techniques to find relevant cohorts on scientific literature about Alzheimer's diseases. The method was validated in a set of 62 cohorts.


Assuntos
Algoritmos , Doença de Alzheimer , Humanos
14.
Comput Biol Med ; 120: 103764, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421658

RESUMO

Early detection is crucial to prevent the progression of Alzheimer's disease (AD). Thus, specialists can begin preventive treatment as soon as possible. They demand fast and precise assessment in the diagnosis of AD in the earliest and hardest to detect stages. The main objective of this work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI), which are not generally used. Sagittal MRIs from ADNI and OASIS data sets were employed. Experiments were conducted using Transfer Learning (TL) techniques in order to achieve more accurate results. There are two main conclusions to be drawn from this work: first, the damages related to AD and its stages can be distinguished in sagittal MRI and, second, the results obtained using DL models with sagittal MRIs are similar to the state-of-the-art, which uses the horizontal-plane MRI. Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages. This could pave the way for further research. Finally, one should bear in mind that in certain fields, obtaining the examples for a data set can be very expensive. This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
15.
Sci Rep ; 10(1): 8515, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444848

RESUMO

Breast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Due to the complexity of BC, the prediction of proteins involved in this disease is a trending topic in drug design. This work is proposing accurate prediction classifier for BC proteins using six sets of protein sequence descriptors and 13 machine-learning methods. After using a univariate feature selection for the mix of five descriptor families, the best classifier was obtained using multilayer perceptron method (artificial neural network) and 300 features. The performance of the model is demonstrated by the area under the receiver operating characteristics (AUROC) of 0.980 ± 0.0037, and accuracy of 0.936 ± 0.0056 (3-fold cross-validation). Regarding the prediction of 4,504 cancer-associated proteins using this model, the best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, CLPSL2, POLR2K, RPL38, AKT3, CDK3, RPS20, RASL11A and UBTD1; the best ranked metastasis driver proteins related to BC were S100A9, DDA1, TXN, PRNP, RPS27, S100A14, S100A7, MAPK1, AGR3 and NDUFA13; and the best ranked RNA-binding proteins related to BC were S100A9, TXN, RPS27L, RPS27, RPS27A, RPL38, MRPL54, PPAN, RPS20 and CSRP1. This powerful model predicts several BC-related proteins that should be deeply studied to find new biomarkers and better therapeutic targets. Scripts can be downloaded at https://github.com/muntisa/neural-networks-for-breast-cancer-proteins.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Aprendizado de Máquina , Redes Neurais de Computação , RNA/metabolismo , Neoplasias da Mama/secundário , Neoplasias da Mama/terapia , Feminino , Perfilação da Expressão Gênica , Humanos , Metástase Neoplásica
16.
Sci Rep ; 10(1): 5285, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210335

RESUMO

Breast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. Although in recent years large-scale efforts have focused on identifying new therapeutic targets, a better understanding of BC molecular processes is required. Here we focused on elucidating the molecular hallmarks of BC heterogeneity and the oncogenic mutations involved in precision medicine that remains poorly defined. To fill this gap, we established an OncoOmics strategy that consists of analyzing genomic alterations, signaling pathways, protein-protein interactome network, protein expression, dependency maps in cell lines and patient-derived xenografts in 230 previously prioritized genes to reveal essential genes in breast cancer. As results, the OncoOmics BC essential genes were rationally filtered to 140. mRNA up-regulation was the most prevalent genomic alteration. The most altered signaling pathways were associated with basal-like and Her2-enriched molecular subtypes. RAC1, AKT1, CCND1, PIK3CA, ERBB2, CDH1, MAPK14, TP53, MAPK1, SRC, RAC3, BCL2, CTNNB1, EGFR, CDK2, GRB2, MED1 and GATA3 were essential genes in at least three OncoOmics approaches. Drugs with the highest amount of clinical trials in phases 3 and 4 were paclitaxel, docetaxel, trastuzumab, tamoxifen and doxorubicin. Lastly, we collected ~3,500 somatic and germline oncogenic variants associated with 50 essential genes, which in turn had therapeutic connectivity with 73 drugs. In conclusion, the OncoOmics strategy reveals essential genes capable of accelerating the development of targeted therapies for precision oncology.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Genes Essenciais , Mutação , Medicina de Precisão , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Prognóstico , Mapas de Interação de Proteínas , Proteoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033398

RESUMO

Osteosarcoma is the most common subtype of primary bone cancer, affecting mostly adolescents. In recent years, several studies have focused on elucidating the molecular mechanisms of this sarcoma; however, its molecular etiology has still not been determined with precision. Therefore, we applied a consensus strategy with the use of several bioinformatics tools to prioritize genes involved in its pathogenesis. Subsequently, we assessed the physical interactions of the previously selected genes and applied a communality analysis to this protein-protein interaction network. The consensus strategy prioritized a total list of 553 genes. Our enrichment analysis validates several studies that describe the signaling pathways PI3K/AKT and MAPK/ERK as pathogenic. The gene ontology described TP53 as a principal signal transducer that chiefly mediates processes associated with cell cycle and DNA damage response It is interesting to note that the communality analysis clusters several members involved in metastasis events, such as MMP2 and MMP9, and genes associated with DNA repair complexes, like ATM, ATR, CHEK1, and RAD51. In this study, we have identified well-known pathogenic genes for osteosarcoma and prioritized genes that need to be further explored.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Osteossarcoma/genética , Osteossarcoma/patologia , Biologia Computacional/métodos , Consenso , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética
18.
PeerJ Comput Sci ; 6: e287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33816938

RESUMO

Food consumption patterns have undergone changes that in recent years have resulted in serious health problems. Studies based on the evaluation of the nutritional status have determined that the adoption of a food pattern-based primarily on a Mediterranean diet (MD) has a preventive role, as well as the ability to mitigate the negative effects of certain pathologies. A group of more than 500 adults aged over 40 years from our cohort in Northwestern Spain was surveyed. Under our experimental design, 10 experiments were run with four different machine-learning algorithms and the predictive factors most relevant to the adherence of a MD were identified. A feature selection approach was explored and under a null hypothesis test, it was concluded that only 16 measures were of relevance, suggesting the strength of this observational study. Our findings indicate that the following factors have the highest predictive value in terms of the degree of adherence to the MD: basal metabolic rate, mini nutritional assessment questionnaire total score, weight, height, bone density, waist-hip ratio, smoking habits, age, EDI-OD, circumference of the arm, activity metabolism, subscapular skinfold, subscapular circumference in cm, circumference of the waist, circumference of the calf and brachial area.

19.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491969

RESUMO

In this work, we improved a previous model used for the prediction of proteomes as new B-cell epitopes in vaccine design. The predicted epitope activity of a queried peptide is based on its sequence, a known reference epitope sequence under specific experimental conditions. The peptide sequences were transformed into molecular descriptors of sequence recurrence networks and were mixed under experimental conditions. The new models were generated using 709,100 instances of pair descriptors for query and reference peptide sequences. Using perturbations of the initial descriptors under sequence or assay conditions, 10 transformed features were used as inputs for seven Machine Learning methods. The best model was obtained with random forest classifiers with an Area Under the Receiver Operating Characteristics (AUROC) of 0.981 ± 0.0005 for the external validation series (five-fold cross-validation). The database included information about 83,683 peptides sequences, 1448 epitope organisms, 323 host organisms, 15 types of in vivo processes, 28 experimental techniques, and 505 adjuvant additives. The current model could improve the in silico predictions of epitopes for vaccine design. The script and results are available as a free repository.


Assuntos
Mapeamento de Epitopos , Aprendizado de Máquina , Peptídeos/imunologia , Sequência de Aminoácidos , Humanos , Peptídeos/química , Curva ROC , Relação Estrutura-Atividade
20.
Sci Rep ; 8(1): 16679, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420728

RESUMO

Consensus strategy was proved to be highly efficient in the recognition of gene-disease association. Therefore, the main objective of this study was to apply theoretical approaches to explore genes and communities directly involved in breast cancer (BC) pathogenesis. We evaluated the consensus between 8 prioritization strategies for the early recognition of pathogenic genes. A communality analysis in the protein-protein interaction (PPi) network of previously selected genes was enriched with gene ontology, metabolic pathways, as well as oncogenomics validation with the OncoPPi and DRIVE projects. The consensus genes were rationally filtered to 1842 genes. The communality analysis showed an enrichment of 14 communities specially connected with ERBB, PI3K-AKT, mTOR, FOXO, p53, HIF-1, VEGF, MAPK and prolactin signaling pathways. Genes with highest ranking were TP53, ESR1, BRCA2, BRCA1 and ERBB2. Genes with highest connectivity degree were TP53, AKT1, SRC, CREBBP and EP300. The connectivity degree allowed to establish a significant correlation between the OncoPPi network and our BC integrated network conformed by 51 genes and 62 PPi. In addition, CCND1, RAD51, CDC42, YAP1 and RPA1 were functional genes with significant sensitivity score in BC cell lines. In conclusion, the consensus strategy identifies both well-known pathogenic genes and prioritized genes that need to be further explored.


Assuntos
Algoritmos , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Humanos , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA